
The Weird Machines in Proof-Carrying Code
IEEE Security and Privacy LangSec Workshop 2014

Invited paper

Julien Vanegue

Bloomberg L.P.
New York, USA.

Abstract—A grand challenge in computer programming is the
formal verification of dynamic properties of programs. Verifica-
tion frameworks such as Proof-Carrying Code (PCC) enforce
policies and memory models to prove that programs cannot
go wrong based on the semantics of predefined type inference
rules. Automated deduction techniques often act on models with
machine abstraction so that analysis remains tractable even for
large programs. As such, low-level details of program execution
may be changed without invalidating the program proof. We
capture the notion of Weird Machine (also called Divergent
Machine) in PCC to formalize the unspecified execution of
programs when proofs do not sufficiently enforce key properties
to forbid execution of untrusted computations. Consequences
of such computations may go from benign (minor impact on
program performance) to critical (leading to security issues).
We discuss ideas to further structure verification systems and
make them more resilient to weird machines than traditional
frameworks like PCC.

I. INTRODUCTION

Proof-Carrying Code (PCC) [Nec97] and other
computational verification systems [XL12] are frameworks
in which untrusted programs can be verified to be safely
executed according to the type and inference rules used to
enforce formal contracts, checked either before (or during)
program execution. In the last few decades, a great amount
of effort has been dedicated to verify the safety of critical
programs from embedded real-time systems to common
software part of major operating systems [KEH+09]

Proof-Carrying code comes into two main flavors: the
original Proof-Carrying Code [Nec97], and the Foundational
Proof-Carrying code (FPCC) [App01]. It is expected in such
systems to make use of type rules either directly in the axioms
of the system (therefore making the system strongly tied to the
type system), although FPCC [App01] forces each type rule
to be first defined from ground logical axioms before they can
be used in proofs. A tempting assumption for PCC is to use it
as an integrity system where the program is ensured to satisfy
its specification as long as its proof is independently verified
by the executing system. However, the original goal of PCC
is not to capture the intent that the system only executes what
the specification enforces, and nothing else. This is shown in

the set of original PCC articles where invariants are checked
at specific program points by introducing a new virtual
instruction INV whose parameter is an assertion that must
be verified by the program in that context so that execution
can continue. PCC does not capture whether the program
also executed additional instructions that were not accounted
for in the specification. We say that PCC is vulnerable to
Divergent Machines, weird computational artifacts (some
say gadgets) where additional code execution can happen
in proved programs and will escape the program specification.

The original definition of Foundational Proof Carrying
Code (FPCC) [App01] is defined by semantic rules for an
abstract machine instruction set, and contains additional
conditions capturing that parts of the machine contexts
(memory, registers, etc) are not affected by instructions.
This is characterized in FPCC by using memory contexts
to track values that have changed during the execution of
the typed inference rule. As such, FPCC is more resilient
to these weird machines than PCC. Additionally, FPCC
suggests the use of type-preserving compilers, such as the
one in CompCert [Ler06], where proofs in source code can
translate to proofs on machine code. This is to protect against
invalidating the safety invariants in an untrusted or incorrect
compiler. Such end-to-end certification systems offer fewer
opportunities to go wrong than traditional PCC-style systems.

Nonetheless, attacks on FPCC can happen when the
memory model, the machine abstraction, or the policy itself
are incomplete or incorrect. In attacks against memory model,
an attacker takes advantage of the fact that real machine
operations are not captured in the PCC machine semantics.
For example, the order of bits in the encoding of data types
(such as integers, pointers and bit vectors) is specified by
the memory model. The CompCert memory model [XL12]
represents memory at the byte level and models the sign of
integers. It can deal with invalid computations acting on a mix
of pointer and integer variables. For example, single bytes
of pointer typed values in CompCert cannot be manipulated
directly, thus capturing errors due to partial pointer overrides
happening during memory corruption issues. On the other



hand, no bit field algebra is available besides the one allowing
conversion from integer to float (double) type such as in
the presence of union types in the C language. As such, the
model fails to capture cases where bit field of 31 bits are cast
from/to 32 bits integers. Since variable-length bit fields are
not supported in the memory model, and it is unclear how to
define a program that manipulates such objects in CompCert,
as this can be the case in common programs.

The machine abstraction is used to simplify the real
machine and forget details that are not important to perform
proofs. If the (F)PCC framework is driven by a fixed set
of invariants, then such loss of precision can be avoided
by introducing appropriate representations for resources and
instructions and keep soundness when verifying the invariants
of the contract. However, when faced to an attacker with
the ability to inject code in the program, the proof system
can be built around specific properties. Therefore, any used
abstraction is the opportunity for an attacker to introduce
uncaptured computations or side effects that are not accounted
for in the proof. As such, failure to capture some of the
real machine specification introduces potential to perform
computations that will discover unintended state space of the
program.

A central trait of architecture in both PCC and FPCC
resides in the underlying formal system used to verify
logic formulae encoding the desired invariants of programs.
In PCC, a subset of first order predicate logic as well as
application-dependent predicates are predominating. In FPCC,
Church’s Higher Order Logic (HOL) is used, giving proofs
the ability to reason on function types (as well as record
types). None of these logic take resource into account, and it
is possible to define proofs in multiple ways depending on
what order of application is chosen on hypothesis (in lambda
calculus jargon: multiple evaluation strategies can be chosen
to reduce the proof term down its normal form). For example,
proving the type of a record r : A × B can be proved first
by proving π1(r) : A then π2(r) : B, or by first proving
π2(r) : B then π1(r) : A. The order of evaluation is not
specified by the formal logic. Moreover, there can be unused
hypothesis, or hypothesis can be used multiple times. This
introduces an opportunity for attackers to perform hypothesis
reuse and compute additional operations without invalidating
proofs. Other systems based on linear logic [Gir87] attempted
controlling the resource management aspect of such proofs
directly in the logic [PP99], though no complete theory
or implementation of linear proof carrying code has been
established as of today.

Additional policies can be used to enforce structural
constraints on programs, and can also incur unwanted
behavior when data and code can be intermixed (sometimes
on purpose to support self-modifying code). Such policies
are dangerous not only when code can be rewritten but also
when data can be executed. This gives a full cycle of code

generation primitives for an attacker to fool the security
system. Therefore, we discourage the allowance of such
primitives when real program safety is expected.

This article discusses the need for verification systems
aimed at understanding attacker potential and minimizing
opportunities of unspecified behavior in verified programs.
Though the case is made using the example of Proof-Carrying
Code, any formal verification system introducing abstraction
in proofs is exposed to weird divergent machines and other
uncaptured computations.

II. ON LIMITS OF PROOF-CARRYING CODE

Proof-Carrying Code (or PCC) is a framework for the
verification of safety policies applied to mobile, untrusted
programs. PCC relies upon the fact that, while the construction
of a proof is a complex task involving the code compiler and
a Verification Condition generator (VCGen), verification of
proofs is easy enough given the proof and the program.

Mechanisms of PCC are captured using type rules of
the simple form: ρ � o : T where ρ is the register state
containing the values of registers r0, r1, r2, ..., rn, and o is
a program object of type T down to individual expressions
and (constant) variables. Type rule derivations employed to
represent the program constitute the proof that the program
executes accordingly to its type specification. Types can be
used to prove that an address is valid, read-only, or that a
result register holds the expected value at chosen program
points given certain inputs of the verification procedure. As
such, proof-carrying code in its simple form corresponds to
program property checking, where particular constraints are
expected to be true and consistent at a given program point
(for example, at the precondition of a particular API, or at
the header of a loop, etc).

We make the following remarks about PCC and related
systems:

• We warn of a potential misconception that PCC could
be used for lightweight program integrity. We explain
why using PCC for program integrity is insecure even
though PCC employs a sound proof system to verify
mobile proofs.

• We claim that the problem of unspecified computations is
independent of the chosen proof construction, encoding
or verification algorithms and suggest that the described
limitation is not specific to either particular programs or
policies.

• We argue that the use of abstractions in proofs gives up
potential for attackers to introduce additional malicious
program parts whose execution do not invalidate original
proofs but still perform other unspecified operations
together with the normal proved program behavior.



Specific families of proof systems taking resources into
accounts have the ability to express proofs in a way that can
avoid unwanted computations. In particular, the ability to
control precise resource creation and consumption is central
to desired security proofs. For example, such system can
be tentatively constructed from linear logic [Gir87], affine
logic or game semanatics [HO00] where hypotheses contexts
precisely track the number of available resource instances.

Our goal is to illustrate that rogue programs can satisfy
legitimate proofs as long as the same properties are provably
observed at predefined chosen program points. We do such
by looking at the top level form of the Global Safety Proof
for a program as expressed as follow in PCC:

SP (Π, Inv, Post) = ∀rk :
∧
i∈Inv Invi ⊃ V Ci+1

where the verification condition, constructed from the veri-
fied program since the beginning of the ith procedure segment,
implies that the enforced invariant is true at the end of the
procedure segment i+ 1 .

A. The Proof aliasing problem

The limits of proof-carrying code are illustrated by the
creation of another program Π′ which also verifies the proof
originally made for Π :

∃Π′ : SP (Π′, Inv, Post)

We call this phenomenon the program proof aliasing or PPA
problem. The PPA problem has macro-level consequences for
the whole program proof as expressed in PCC since there is
now an equivalence relation such as:

Π ≡ Π′

,
SP (Π, Inv, Post) ⇐⇒ SP (Π′, Inv, Post)

Two programs are proof-aliased when one satisfy the proof
if and only if the other does.

B. Perfect Proof-Carrying Code

One may want to define a perfect version of PCC where
the PPA problem does not arise. We call this version PCC≡α

to distinguish it from PCC as originally defined. The absence
of proof aliasing for programs leads to defining the strongest
formulation for the safety condition that avoids unwanted
computations. Such formalization states that there is a unique
program satisfying a given safety proof:

∃!p such that SP (p, Inv, Post)

Under this definition, one cannot construct a valid proof
for two different programs. This very strong statement is
equivalent to the existence of a fully abstract correspondence
between low-level programs and their proofs, in the style of
the Curry-Howard isormorphism [CFC+72] for imperative
machine code. Such definition does not leave any room

for small optimization or other changes that are otherwise
harmless for the program or its proof. A weaker perfect
safety condition, easier to employ but still avoiding unwanted
computation, would allow used resources (such as memory
or register instances) to be different while allowing the same
proof (modulo renaming):

Π1 ≡α Π2

,
SP (Π1, Inv, Post)⇐⇒ SP (Π2, Invα, Postα)

where Invα (resp. Postα ) are the original invariants
(respectively post-condition) in the safety proof SP after
applying the same α-renaming used to obtain P2 from P1 .
Proof-equivalence modulo α-renaming from P2 to P1 can be
expressed similarly. This alternate definition can be useful
when resources used in proofs are identified by indexes,
addresses or offsets rather than names.

A limitation to this approach is that any two structurally dif-
ferent programs (like two program with different control flows)
must have strictly different proofs (and different proof trees)
even when these programs are observationally equivalent. This
captures the intuition that the amount of resources needed to
satisfy a specification should be minimal and well identified
for each program pretending to satisfy it. Unlike such perfect
system, a realistic system should aim at finding equivalence
classes of programs where the same proof is acceptable for
two different elements as long as certain properties of interest
are guaranteed without loss of precision.

III. THE NATURE OF UNTRUSTED COMPUTATIONS

An original approach to modeling attacker potential is
by formally studying the weird machines (WM) [BLP+11]
intending to describe the security exploits slipping through
verified programs. For simplicity, the use of the axiomatic
semantic ala Hoare [Hoa69] allows us to study the machines
independently of the chosen instruction set.

A. Divergent Control Flow

Let CFG =< {V }, {E} > be a usual definition of a
control flow graph made of a set of vertices and edges (with
the edge set E : V → V ) where Vi ∈ V = (i1, i2, ..., in) is
a vertice in the CFG such as a basic block made of a list of
instructions.

We define a family of projections Πj : V → V such that
Πj(Vi) = {ij} a singleton obtained by unitary projection on
the list of instructions of the basic block.

Let ΠS(VS) : V → V such that V ′S = {ij∈S}
= {Vj1, Vj2, ..., Vjn} with {j1, ..., jn} ∈ S such that
j1 < ... < jn .

be a partition obtained by bigger (union of) projections. The
sequence of instructions obtained by union of projections is



guaranteed to be in order, but does not have to be contiguous
over V.

Some examples of projections on S are V-prefixes (when
only a prefix of instructions are executed), V-suffixes (if
execution starts in the middle of a basic block), or more
generally any sub-sequence of V. Such sub-sequences can be
contiguous or non-contiguous in which not all instructions
are executed in the block, but where executed instructions are
guaranteed to be found one after the other. We call contiguous
sub-sequences of V the result of these projections. These
can arise if an exception is triggered and not all instructions
in the basic block are executed. We also distinguish non-
contiguous sub-sequences of V where executed instructions
are not guaranteed to be contiguous in the address space
of the program. This is the case for architectures with
conditional instructions whose execution depends on some
internal state of the processor such as status flags, content
of translation look-aside buffers used in linear to physical
address translation, or other state that may or may not be
directly accessible to the program.

We define the divergent Weird Control-Flow Graph
(WCFG) as:

WCFG = {CFG}
⋃

{〈V ′, E′〉}

such that E′ = W → V ′ with W ∈ V (CFG) and
V ′ /∈ V (CFG) . By definition of the WCFG, E′ /∈ E except
when E′ = ∅ . Indeed, a WCFG can also exist if E = E′

since any extra state can still be reachable on the WCFG
if the edges are not visited in the same order. Therefore,
E′ ≥ E even though most security exploits will imply that
E′ >> E on the program control flow graph.

B. Weird Computations

Weird computations can be defined using axiomatic
semantics of Hoare as interpretation over the divergent Weird
Control-Flow Graph (WCFG). We note {P}c{Q} to express
the partial verification conditions when a code fragment c
terminates with given postconditions Q when provided with
initial preconditions P.

A traditional Axiomatic semantics of a program over its
Control Flow Graph is given by applying composition rules
on the semantics of its individual program fragments made
of individual instructions i1...n :

{Pre} < V > {Post}
= {Pre} < i1; i2; ...; in > {Post}
= {Pre} < i1 > {Post1}... < in > {Postn}

Each Pre and Post are invariants conditions (first order
logic formulae) locally verified at each state of the execution.
The axiomatic semantics on vertices of the WCFG can be

seen as:

{Pre} < V ′ > {Post}
= {Pre}ΠS(< i1; i2; ...; in >){Post′}
= {Pre} < iα > {Postα} < iβ > {Postβ} < ... >
{Postω}

where {α, β, ..., ω} ∈ S such that α < β < ... < ω .

Note: {Postω} is a divergent state ↔ ∃ΠS such that
{Postω} * {Post} . When {Post} ⊆ {Postω} also holds,
then the divergence is uncaptured by the program proof.

C. Divergent Execution

We draw a correspondence from the executable code to
the value states produced by executing the program. We can
express, very much like the tape of a Turing machine, the
values in vs satisfying the Invariant Inv ∈ F (the set of logic
formulae possibly including boolean and predicated formulae),
where VS is the type of a value store and vs are concrete values
in the store. A concretization function γ : F −→ VS can be
constructed with the necessary and sufficient condition that:

vs = (d1, d2, ..., dn) : VS � Inv : F

Value stores usually represent registers and memory
cells although they could also represent processor flags
or other internal system values even when their value are
only indirectly controlled by an attacker. While it is easier
to reason about large state spaces using invariants at the
abstract level, values allow to map invariant to concrete
execution states of the program, may they be legitimate
(expected) states or unexpected and unspecified divergent
states. Depending on the invariant, there may be a single,
multiple, or no valuation satisfying it. A divergent sequence
s ∈ S = Postα, Postβ , ..., Postω is a sequence of invariants
verified by executing paths on the WCFG. We can represent
divergent sequences using concrete valuations satisfying all
initial, intermediate and final invariants, rather than symbolic
invariant themselves:

vsα � Postα

vsβ � Postβ

...
vsω � Postω

Stored values necessarily include all variable values
appearing in the program contract although additional values
may also be present which are not part of the original safety
predicate. These extra values can be manipulated to perform
computations without changing the original program proof. In
order to reach such extra state, we define a distance function
: δ : S×S → N and we say that a weird sequence converges:

δ(vsα, F ) > δ(vsβ , F ) > ... > δ(vsω, F )



if the distance between the current weird state and the
desired final weird state F keeps diminishing.

ex: δ(S1, S2) =
∑
i di ∈ S1 ≡ di ∈ S2

Final states can be chosen depending on the desired
end state for an attacker. For example, a final state can
be defined as a state where the values of specific registers
is controlled (such as the instruction pointer register).
Sometimes, an attacker will choose desired final states that do
not necessarily involve full untrusted execution, such as these
allowing to read or write specific variables. For example, one
may want to read credential information from a program, or
force the program to accept a successful authentication even
though no valid credentials have been entered.

An example of distance metric between two states can
be defined (without loss of generality) as the number of
equivalent values in the value stores representing each state.
State equivalence is then written:

S1 ≡ S2 ⇐⇒ ∀di ∈ S1,2 : di1 = di2

If δ −→ 0 , the weird sequence (while diverging from the
intended program state) is converging towards an attacker-
chosen final state. Otherwise, the weird sequence diverges
(that is, it comes back to a non-diverging state, or may simply
diverge in the weird state space if not enough computational
power is given to reach desired final attacker states). Although
one can be satisfied by this definition from the high level
standpoint, it is clear that attack progress defined as such
is meant to reach local maximums without reaching final
states. Clearly, another representation is needed to understand
attacker belief and knowledge without relying on concrete
comparison between values between current state and desired
state.

IV. COMPUTATIONAL MODELS OF TRUST

Divergent machines intent to model untrusted code
execution but a complete definition of such weird machines
remains to be given. Modeling attacker knowledge using
traditional systems is generally impractical in the absence
of a more explicit computational representation of attacker
knowledge. As such, we suggest that such machine should
be defined in terms of push-down automata to accurately
represent the stack-based control mechanisms used in
common security exploits. For example, overwriting a return
address or an exception handler stored on the stack to redirect
control flow can be modeled as a reachability problem on a
push-down automaton. Moreover, features of transducers, in
particular the ability to reason on program output, is necessary
to develop compositions of traces where a first execution is
used to obtain some information about the program (such
as variable values or internal address space information)
and a subsequent trace is used to perform operation based
on this guessed information. For example, an information
disclosure vulnerability may be used to guess the location of

existing legitimate instructions that will be later be executed
to perform new operations. This corresponds to reordering
valid computations within a program to reach new states.

A Weird Machine WM =< P,O,Σ,Π,∆,Ψ > can be
used where:

• P is the player representing the attacker machine.
• O is the opponent modeling the program under attack.
• Σ is the concrete language of the attacker output tape

(which coincides with the program input tape).
• Π is the concrete language of the program stack.
• ∆ is the concrete language of the program output tape

(which coincides with the attacker input tape).
• Ψ is the symbolic language modeling the player (Ψp) and

opponent (Ψo) heap states.

in which the attacker transition function θ(P,∆,Ψ) ∈ Σ
and the target program transition function φ(O,Σ,Π,Ψ) ∈ ∆
are used to make progress on the WM. At the beginning
of execution of such machine, both input and output tapes
may be empty and the attacker must play first by starting the
target program using chosen initial conditions in Σ (on the
input tape of the target program). The goal of an attacker is
to augment Ψp iteratively until the desired final state F ∈ ∆
is reached.



Such machines have two remarkable constructs:

• The WM is a combination of two transducers (a.k.a.
input/output automata) where the input tape of one trans-
ducer corresponds to the output tape of the second. As
the attacker can feed input to the program, the attacker
machine is represented as the player while the program
is the opponent. Execution on such machine is a game
between player and opponent, unlike usual computational
models where the program under execution is central and
attacker is not formally modeled.

• The WM is a hybrid concrete / symbolic (concolic)
abstract machine. Concrete representation is retained to
model input and output behavior as well as the stack
behavior given the central role played by the stack when
storing control records. In the other hand, maintaining
all possible concrete heap configurations for a program
is intractable. Instead, we choose to represent heap state
symbolically using a formal logic language (such as, and
without loss of generality, first order logic).

The details of the semantics for the weird machine is out
of scope for this article although we present its general traits.
Just like traditional verification framework, the machine
construct is parameterized with a target language semantics
(interpretation rules of the target program on concolic
instruction set of the WM) and use background predicates
(the set of concolic assumptions used for global invariants,
which are used to encode truth about data types and other
system invariants). However, unlike most popular intermediate
forms [BCD+06], the WM representation maintains a concrete
program stack and retains machine-level encoding for scoped
execution and continuations, so that common attack patterns
like code reuse techniques which heavily rely on the layout
of the stack during program execution can be modeled.
Following patterns of reactive programming using the two
transducers will allow for input/output characterization of
attacks where information disclosure or multiple interaction
exploits are performed on the system. In such weird
machines, attacker knowledge can be represented by what
hypothesis are known by the player and how these can be
used to guide further target program analysis and execution,
converging to a information flow system where explicit
player knowledge is modeled [CMS06]. It is important to
split the target program knowledge base and the attacker
knowledge base since multiple security protections aims at
hiding internal program state from attackers. Therefore, not
all symbolic target program state is known by the attacker
and splitting environment is meant to represent this constraint.

A major challenge in the way of a comprehensible model
for understanding of attacks on abstract machines is the
representation of dynamic memory management and program
heap. One must track the state of data and meta-data as
memory chunks get used in program [Van13]. It happens

that heap management behavior is largely non-deterministic
in most programs and a probabilistic interpretation may be
needed to track properties of interest. Previous attempts at
doing so [Pfl84] have used assumptions that do not allow
to capture realistic dynamic behavior of programs especially
when protections and implemented to circumvent attacks.

A more ambitious problem is to define a version of proof-
carrying code that is restricted enough to avoid weird machines
but relaxed enough to allow equivalence classes between
programs, so that some legit modifications of the program
(like optimizing transformation) may be performed without
invalidating the proofs. Such system could possibly use prin-
ciples of linear logic under the hood, so that resources are
precisely accounted for. For example, it should be forbidden
for programs to compute intermediate results that are not
reused, or that are reused multiple times. While the former
problem can be approach using program simplification such
as dead-code elimination, the latter can be difficult if the
program intent is to store results of computations for later
reuse as in dynamic or divide-and-conquer programming. It
becomes necessary to measure operations performed on these
value stores to ensure that only intended code gets executed
and no extra computational power is given to attackers.

V. CONCLUSION

The Weird Machines, or Divergent Machines in verifica-
tion systems such as Proof-Carrying code take advantage of
equivalence classes introduced by abstractions in program
proofs. Proof-Carrying code and related systems guarantee
that programs satisfy safety properties but do not guarantee
the absence of other side effects that may not invalidate
the main safety proofs. As such, the use of abstraction in
proof systems surrenders the ability to distinguish unintended
program computations from intended ones. Established proofs
may not guarantee that the system is free from other contingent
behavior remaining uncaptured by the safety conditions. Like-
wise, the lack of concrete representation of attacker knowledge
in such systems make them unsuitable for practical security
analysis of vulnerabilities and other subtle program misbehav-
ior. We therefore warn that such verification systems should
carefully be considered when fine-grained computational in-
tegrity properties must be preserved.

REFERENCES

[App01] Andrew W. Appel. Foundational proof-carrying code. 2001.
[BCD+06] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,

and K Rustan M Leino. Boogie: A modular reusable verifier for
object-oriented programs. pages 364–387, 2006.

[BLP+11] Sergey Bratus, Michael E Locasto, Meredith L Patterson, Len
Sassaman, and Anna Shubina. Exploit programming: from buffer
overflows to weird machines and theory of computation.; login,
2011.

[CFC+72] Haskell Brooks Curry, Robert Feys, William Craig, J Roger
Hindley, and Jonathan P Seldin. Combinatory logic, volume 2.
North-Holland Amsterdam, 1972.

[CMS06] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider.
Quantifying information flow with beliefs. 2006.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50(1):1 – 101, 1987.



[HO00] J.M.E. Hyland and C.-H.L. Ong. On full abstraction for pcf: I,
ii, and {III}. Information and Computation, 163(2):285 – 408,
2000.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, October 1969.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andron-
ick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engel-
hardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. sel4: Formal verification of an os
kernel. pages 207–220, 2009.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end or:
Programming a compiler with a proof assistant. SIGPLAN Not.,
41(1):42–54, January 2006.

[Nec97] George C. Necula. Proof-carrying code. 1997.
[Pfl84] G Ch Pflug. Dynamic memory allocation–a markovian analysis.

The Computer Journal, 27(4):328–333, 1984.
[PP99] Mark Plesko and Frank Pfenning. A formalization of the proof-

carrying code architecture in a linear logical framework. 1999.
[Van13] Julien Vanegue. The automated exploitation grand challenge.

2013.
[XL12] Sandrine Blazy Gordon Stewart Xavier Leroy, Andrew Appel.

The compcert memory model, version 2. INRIA Research Report
7987, 2012.


