
The Weird Machines in Proof-Carrying Code
IEEE Security and Privacy LangSec Workshop

Julien Vanegue

Bloomberg L.P.
New York, USA.

May 18, 2014

Proof-Carrying Code

I PCC: bundle a proof with a program so the proof can be
checked once the program is taken from an untrusted source

I Ex: a web site, an untrusted compiler...

I Type rules of the form: ρ � o : T

I ρ is the register state containing the values of registers
r0, r1, r2, ..., rn

I o is a program object of type T down to individual expressions
and (constant) variables.

I FPCC: Foundational Proof-Carrying Code - PCC proving
everything from the ground up.

I FPCC first prove ground type rules in logic, then use proved
type rules in proofs.

PCC example

1: XOR r2, r2 // r2 = 0
2: INC r2 // r2 = 1
3: MOV r1, 4 // r2 = 1 and r1 = 4
4: ADD r1, r2 // r2 = 1 and r1 = 5
5: MUL r1, r1 // r2 = 1 and r1 = 25
6: INV (r1 == 25)
7: DIV r1, 5 // r2 = 1 and r1 = 5
8: RET r1
9: INV (r1 == 5)

PCC Global Safety Predicate

SP(Π, Inv ,Post) = ∀rk :
∧

i∈Inv Invi ⊃ VCi+1

First issues with PCC

I Checks are performed locally using a virtual INV instruction
(invariant)

I Very much like a partial observational equivalence

I No guarantees on the order or nature of intermediate
computations

I r : A× B can be proved first by proving π1(r) : A then
π2(r) : B, or by first proving π2(r) : B then π1(r) : A.

Design issue with PCC

I While PCC is based on sound proof systems, it was made to
verify discrete proofs of programs

I Note: FPCC is stricter on that matter though real-world
implementations

I PCC was not created to reason about attacker
capabilities

I Consequence: attacker an execute unspecified operations as
long as the proof remains valid

Side remark : Proof aliasing Problem

∃Π′ : SP(Π′, Inv ,Post)

Π ≡ Π′

,
SP(Π, Inv ,Post) ⇐⇒ SP(Π′, Inv ,Post)

Weird Machines

WM =< P,O,Σ,Π,∆,Ψ > where:

I P is the player e.g. the attacker machine.

I O is the opponent/environment modelling the program under
attack.

I Σ is the concrete language of the attacker output tape (which
coincides with the program input tape).

I Π is the concrete language of the program stack.

I ∆ is the concrete language of the program output tape (which
coincides with the attacker input tape).

I Ψ is the symbolic language modelling the player and opponent
heap states.

Properties of Weird Machines

I The WM is a combination of two transducers (a.k.a.
input/output automata) where the input tape of one
transducer corresponds to the output tape of the second.

I The WM is a hybrid concrete / symbolic abstract machine
(concrete symbolic abstract machine or concolic machine)

I The WM construct is generic and parameterized with a target
language semantics S (interpretation rules of the target
program) and a background predicate BP

Concrete example: TLS heartbeat vulnerability

Require: sock : Valid network socket
Ensure: True on success, False on failure
1: char buff[MAX SIZE]
2: int readlen = recv(sock, buff, MAX SIZE);
3: if (readlen ≤ 0) return False;
4: rec t *hdr = (rec t *) buff;
5: char *out = malloc(sizeof(rec t) + hdr->len);
6: if (NULL == out) return (false);
7: memcpy(out, buff + sizeof(rec t), hdr->len);
8: out->len = hdr->len;
9: send(sock, out, hdr->len + sizeof(rec t));

10: free(out);
11: return True

Target semantics : assignment

Ψ � Ψ′,Ψ′′ a ∈ Ψ′ a /∈ Ψ′′

a = b
Ψ � Ψ′ a = b

Target semantics : function call

Π = Π′ :: pn :: (...) :: p1
l1 : f (p1, ..., pn) l2 :

Π = Π′ :: l2 $pc = addr(f)

Target semantics : return

Π = Π′ :: l2
return v

Π = Π′ :: v $pc = l2

Target semantics : send

Π = Π′ :: a :: b :: c
ret = send(a, b, c)

Π = Π′ :: ret ∆ = ∆′ :: b1 :: b2 :: (...) :: bret

Target semantics : receive

Σ = Σ′ :: v1 :: v2 :: (...) :: vc Π = Π′ :: a :: b :: c

ret = recv(a, b, c)

Π = Π′ :: ret ret ≤ c ∀δ ∈ [0, ret[: b[δ] = vδ

Target semantics : malloc

∃p∀δ ∈ [0, sz [: M(p + δ) ∧ ¬A(p + δ)

p = malloc(sz)

∀δ ∈ [0, sz [: A(v + δ) ∧ v = p

Target semantics : free

∀δ ∈ [0, sz [: A(v + δ) ∧ v = p

free(p)

∃p∀δ ∈ [0, sz [: M(p + δ) ∧ ¬A(p + δ)

Target semantics : memcpy

R(&size) ∀δ1 ∈ [0, sz[: A(v1 + δ1) ∧ W(v1 + δ1) ∀δ2 ∈ [0, sz[: A(v2 + δ2) ∧ R(v2 + δ2)

memcpy(v1, v2, sz)

∀δ3 ∈ [0, sz[: v1[δ3] = v2[δ3]

Discussion: Ideal Proof-Carrying code?

Global condition: ∃!p such that SP(p, Inv ,Post)

Π1 ≡α Π2

,
SP(Π1, Inv ,Post)⇐⇒ SP(Π2, Invα,Postα)

Conclusion

I Proof-Carrying Code is a useful system to prove safety
properties of programs

I Yet it should not be confused with an integrity system

I Moreover, PCC is not suited to reason about attacker
capabilities

I We give the very first formal definition of Weird Machines as
a hybrid concrete symbolic machine

I More examples should be developed (memory corruptions,
use-after-free, etc) to refine formalism

	Semantics

