The Weird Machines in Proof-Carrying Code
IEEE Security and Privacy LangSec Workshop

Julien Vanegue

Bloomberg L.P.
New York, USA.

May 18, 2014

Proof-Carrying Code

» PCC: bundle a proof with a program so the proof can be
checked once the program is taken from an untrusted source

» Ex: a web site, an untrusted compiler...

> Type rules of the form: pEFo: T

> p is the register state containing the values of registers
n,rn,rn,....n

> o is a program object of type T down to individual expressions
and (constant) variables.

» FPCC: Foundational Proof-Carrying Code - PCC proving
everything from the ground up.

» FPCC first prove ground type rules in logic, then use proved
type rules in proofs.

PCC example

©CoOoNDaTAEWLNH

XORr2,r2//r2=0

INCr2 //r2=1

MOV rl,4//r2=1andrl =4
ADDrl,r2 //r2=1andrl =5
MUL 1, r1 //r2=1and rl =25
INV (r1 == 25)
DIVrl,5//r2=1andrl =5
RET r1

INV (r1 == 5)

PCC Global Safety Predicate

SP(N, Inv, Post) = Vri : Nicjny Invi O VCiya

First issues with PCC

» Checks are performed locally using a virtual INV instruction
(invariant)
> Very much like a partial observational equivalence

» No guarantees on the order or nature of intermediate
computations

» r: A X B can be proved first by proving 71(r) : A then
ma(r) : B, or by first proving ma(r) : B then m1(r) : A.

Design issue with PCC

» While PCC is based on sound proof systems, it was made to
verify discrete proofs of programs

» Note: FPCC is stricter on that matter though real-world
implementations

» PCC was not created to reason about attacker
capabilities

» Consequence: attacker an execute unspecified operations as
long as the proof remains valid

Side remark : Proof aliasing Problem

an’ : SP(I’, Inv, Post)

n=rr

A

SP(M, Inv, Post) = SP(IV, Inv, Post)

Weird Machines

WM =< P, 0, %, T, A,V > where:
> P is the player e.g. the attacker machine.

» O is the opponent/environment modelling the program under
attack.

v

Y is the concrete language of the attacker output tape (which
coincides with the program input tape).

v

[T is the concrete language of the program stack.

v

A is the concrete language of the program output tape (which
coincides with the attacker input tape).

v

WV is the symbolic language modelling the player and opponent
heap states.

Symbolic
Target State
€v

Symbolic
Player
State

€T

Input Target Tape
= Output PlayerTape
ez

—

Target Machine
O (“Opponent’)

Attacker Machine
P (‘Player’)

Output Target Tape
= Input Player Tape
€A

Concrete program stack
ell

Properties of Weird Machines

» The WM is a combination of two transducers (a.k.a.
input/output automata) where the input tape of one
transducer corresponds to the output tape of the second.

» The WM is a hybrid concrete / symbolic abstract machine
(concrete symbolic abstract machine or concolic machine)

» The WM construct is generic and parameterized with a target
language semantics S (interpretation rules of the target
program) and a background predicate BP

Concrete example: TLS heartbeat vulnerability

Require: sock : Valid network socket
Ensure: True on success, False on failure

1: char buff[MAX_SIZE]

2: int readlen = recv(sock, buff, MAX_SIZE);

3: if (readlen < 0) return False;

4; rec_t *hdr = (rec_t *) buff;

5: char *out = malloc(sizeof(rec_t) + hdr->len);
6: if (NULL == out) return (false);

7: memcpy(out, buff + sizeof(rec_t), hdr->len);
8: out->len = hdr->len;

9: send(sock, out, hdr->len + sizeof(rec_t));

10: free(out);

. return True

[ay
[y

Target semantics : assignment

VE WY aeV ag¢V!

a==>
v E WV a=b>bt

Target semantics : function call

N=0:pp:(..):p
11:f(p1,..,pn) 12:

n="n:/2 $pc = addr(f)

Target semantics : return

n="n::/2
return v

NM=0n:v $pc =12

Target semantics : send

N=MN"::a:b:c
ret = send(a, b, c)

MN=n::ret A=A":bl:b2:(..) bret

Target semantics : receive

Y=%uwviowve () v N=Mn":a:b:c

ret = recv(a, b, c)
M=0N":ret ret<c Voe]l0,ret]: b[d] = vs

Target semantics : malloc

IpVs € [0, sz[: M(p +) A =A(p + §)

p = malloc(sz)
Vo € [0,sz[: A(v+d)Av=p

Target semantics : free

Vo € [0,sz[: A(v+d)Av=p
free(p)

ApVé € [0, sz[: M(p + d) A —A(p + 9)

Target semantics : memcpy

R(&size) V61 € [0, sz[: A(vl+ 61) A W(v1 + 61) Vép € [0, sz[: A(v2 + 82) A R(v2 + 62)

memcpy(vl, v2, sz)

Vé3 € [0, sz[: v1[§3] = v2[63]

Discussion: ldeal Proof-Carrying code?

Global condition: 3!p such that SP(p, Inv, Post)

My =, Mo

A

SP(My, Inv, Post) <= SP(I, Inv,, Post,,)

Conclusion

» Proof-Carrying Code is a useful system to prove safety
properties of programs

> Yet it should not be confused with an integrity system

» Moreover, PCC is not suited to reason about attacker
capabilities

> We give the very first formal definition of Weird Machines as
a hybrid concrete symbolic machine

» More examples should be developed (memory corruptions,
use-after-free, etc) to refine formalism

	Semantics

